

Advanced cementitious materials, MSE 420

Lecture 2: Durability of cementitious materials

Dr. Beatrice Malchiodi 18 September 2024

Learning objectives

By the end of this class, you will be able to...

- **Define** durability, and **interpret** its significance for concrete and concrete structures.
- Describe the main degradation processes affecting concrete and concrete structures, and identify the parameters influencing them.
- Suggest mitigation and prevention solutions for the major degradation processes affecting concrete and concrete structures.
- **Relate** concrete durability to the sustainability of real concrete structures.

Key definitions for durability

Durability of cementitious materials

- The ability to resist weathering action, chemical attack and abrasion while maintaining desired engineering properties. (causes + performance)
- The ability of the construction to maintain, over its designed service life, the performance levels for which it was designed, given the environmental characteristics in which it is located and the expected level of maintenance.
 D.M.17/01/2018 (service life + performance + causes + maintenance)

Durability of cementitious materials

- Long-term property. It defines the service life.
- Depends on material properties and environmental conditions.
- Influences the performance of the structure.
- Affects the sustainability of the structure (low durability low sustainability).
- Can be controlled by:

Good design (exposure conditions, material properties, cover depth etc.) Good manufacturing (mixing, compaction, curing, etc.)

Good maintenance

Beware of intrinsic durability

Durability Intrinsic property

Durability Environment

- There are no durable and non-durable materials/structures.
- We can define a material/structure as durable just referring to the environment to which it is exposed.
- Durability can and must be designed depending on the environment Exposure class (water to cement ratio, porosity, cover depth – Ref to Lecture 6 Concrete design)

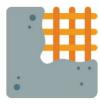
The risks – Safety, not just performance!

Collapse of one of the most crucial highway viaducts in Italy: Ponte Morandi, Genova (IT)

14 August 2018, 11:36 am

43 victims, 11 injured, 566 displaced.

Before starting – Durability and general practises



Durability of cementitious materials

Can be controlled by:

Good design (exposure conditions, material properties, cover depth etc.)

Good manufacturing (mixing, compaction, curing, etc.)

Good maintenance

The role of the mix design

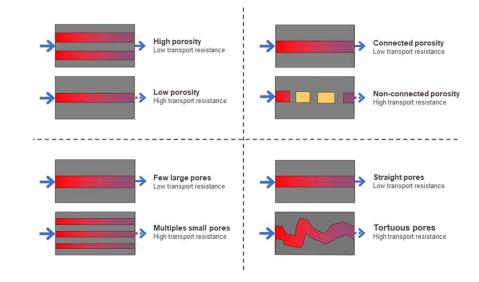
How do we proportion the components in the concrete mix?

This influences the: Sustainability Performance (Durability and Strength)

> Lecture n. 11 Concrete design

Good design (exposure conditions, material properties, cover depth etc.)

The role of porosity


Good design (exposure conditions, material properties, cover depth etc.)

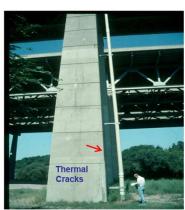
Recap from MSE-322.

Durability is strictly related to permeability -> Transportation mechanisms mainly occur in the cement paste.

Some overall recommendations to reduce permeability, thus increase durability:

- Reduce the total porosity
- Reduce connected porosity
- Reduce pore size
- Increase tortuosity

The role of cracks – site practices



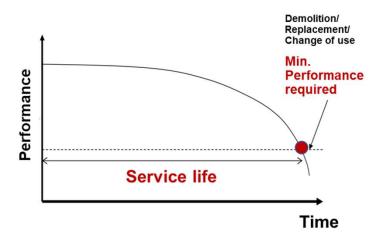
Good manufacturing (mixing, compaction, curing, etc.)

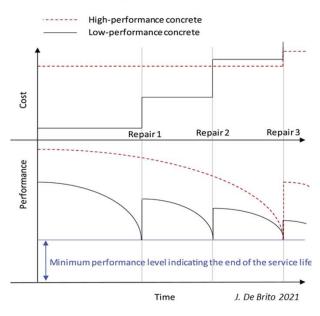
Prevent cracking and other defects to prevent aggressive agents from penetrating through the concrete.

Good inspection of site practices (placing, compaction and curing):

- Protect the fresh concrete from plastic shrinkage
- Keep the moisture to lower early drying shrinkage
- Minimize thermal cracking due to gradients from external sources (ie. protect from cold temperatures or the hot sun)

Pre-congress course ICCC 2023 Thailand, Durability design and Standards, D. Hooton




Durability of cementitious materials

Def 2: (service life + performance + causes + maintenance)

With the expected level of maintenance

With repairs

Durability of cementitious materials

Good maintenance

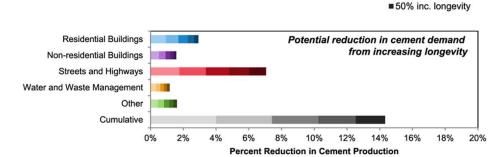
■ 10% inc. longevity

■ 20% inc. longevity

■ 30% inc. longevity ■ 40% inc. longevity

Long-lasting design = slowing resource flows by extending the technical lifetime of concrete structural elements and whole structures.

i.e. good structural design and good concrete mix design


For the built environment...

Concrete stocks -

Concrete inflows and outflows ↓

CO₂ ↓

Volumes of raw materials extracted ↓

Miller (2020)

Durability – Degradation processes

Degradation processes

Physical attack

- Abrasion
- Erosion
- Cavitation
- Physical salt attack
- Freeze-thaw
- Fire damage

Chemical attack

- Corrosion Carbonation and Chlorides penetration
- Alkali aggregate reaction
- Sulphate attack
- Acid attack
- Biogenic attack

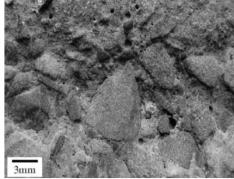
Outline for each degradation process

- Understand the deterioration process
- Identify the influencing parameters
- Suggest mitigation/prevention solutions
- Test methods

Physical Attack

Abrasion

https://blog.kryton.com/2021/08/concrete abrasion-resistance-interview-part-1/


Physical wear from rubbing or friction due to external forces (vehicular traffic, studded tires, snow tire chains, steel/ hard rubber-wheeled traffic etc.).

Pavements, especially in bends.

The abrasion resistance is improved if:

- Low surface porosity
- Surface finishing
- High compressive strength (low w/b, graded aggregates)
- Paste hardness and low content
- Hard and tough aggregates, good aggregate/paste bond
- Two-course floors

(1/4)

Erosion (2/4)

Physical wear due to rainwater, flowing water or wind carrying solid particles. It depends on the particles' quantity, shape, size, hardness and speed.

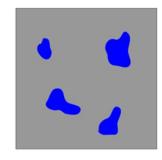
Hydraulic structures, viaducts, bridges, and marine environment exposure.

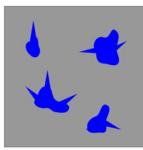
University of Sciences and of Technology Houari Boumedien, Algeria Hadja and Kharchi (2017)

The erosion resistance is improved if:

- Low surface porosity
- Surface finishing
- High compressive strength (low w/b, graded aggregates)
- Paste hardness and low content
- Hard and tough aggregates, good aggregate/paste bond
- Low speed of water flow- Low slopes

Freeze-thaw


(3/4)


D-line cracking, popout and crumbling, fatigue damage.

Hydraulic structures, areas with cyclic temperature changes, saturated or nearly saturated conditions, aggregates.

- Freezing: ice formation (V_{ice} = V_{water} + 9%)
 - > No cracks exploitation of interconnected pores
 - > Cracks insufficient pore volume, high pressure
- Thawing: ice melting
 - Faster damage if cracks reach the surface, external water enters concrete

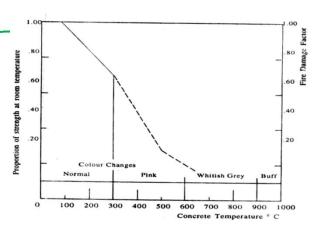
Freeze-thaw

The freeze-thaw resistance is improved if:

- Unsaturated conditions
- Slow freeze-thaw cycles (not rapid temperature changes)
- Air-entraining agents
- Connected pore structure
- Use of chemicals/de-icing salts to lower the freezing point of water
- Aggregates not susceptible to freeze-thaw (small, non-porous, unsaturated)
- Early strength development

https://www.polytrade.com.br/most-common-questions-about-air-entrained-concrete/

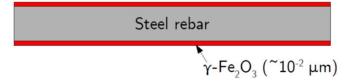
LC³ concrete behaves similarly to OPC concrete when de-icing salts are added. Good compatibility of air-entraining admixtures with LC³


Zunino et al. Limestone Calcined Clay Cements (LC3)

Fire damage

(4/4)

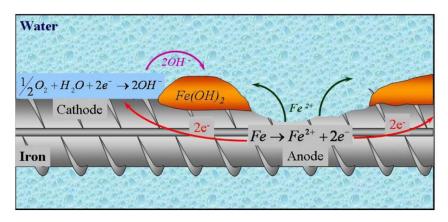
- Concrete is a good thermal insulator.
- Operating T°C Concrete and steel same thermal expansion
- 100-150°C Cracking paste/aggregate interphase
- 500°C Strength loss of steel
- 750°C Surface spalling paste/aggregate (Higher strength concretes spall more)
- High T°C Cover collapse and buckling (concrete and steel differential stresses)
- Colour changes from grey to pink to buff
- ➤ Concrete cover: homogeneous, dense, thick. 5 cm thick 500°C in 3-4hours



Chemical Attack

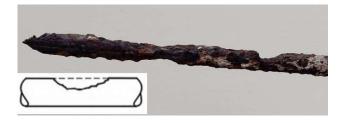
How can steel reinforcement be stable in concrete?

- Passivating layer
- Adequate concrete cover depth (to be designed)

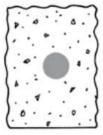


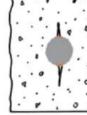
Thomas, Folliard and Scrivener, 2008

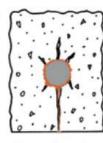
- Electrochemical process anode and cathode & electrolytic solution
- Breakdown of passive layer or presence of two different types of metals
- Solution available in the concrete pores.

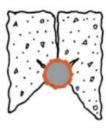


Thomas, Folliard and Scrivener (2008) Mehta and Monteiro. 2006

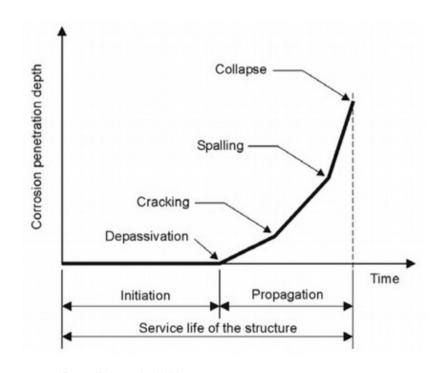

Influence on steel


- Reduction of the cross-section
- Reduction in tensile strength




<u>Influence on concrete</u>

- Cracking
- Spalling
- Reduction in compressive strength


Before Corrosion

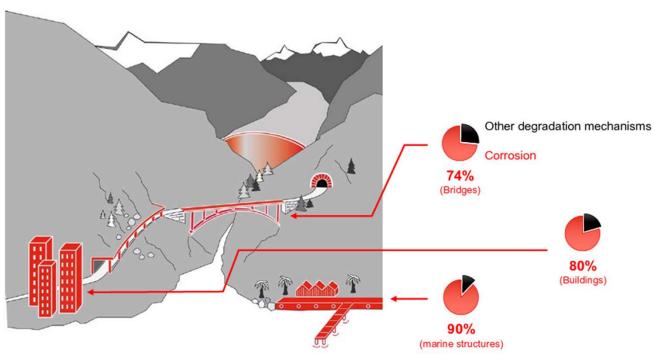
Build-up of Corrosion Products

Further Corrosion, Surface Cracks, Stains

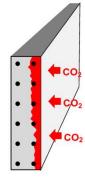
Eventual Spalling, Corroded Bar Exposed

Bertolini et al. 2013

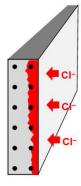
- Concrete cover: homogeneous, thick, low porosity, no cracks.
- If already degraded:
 - 1. removal of degraded concrete;
 - 2. scarification of existing reinforcing bars;
 - 3. passivating treatment of reinforcing bars;
 - 4. restoring concrete cover;
 - 5. concrete finishing;
 - 6. protective painting.



https://the constructor.org/practical-guide/cathodic-protection-of-reinforced-concrete-structures/5854



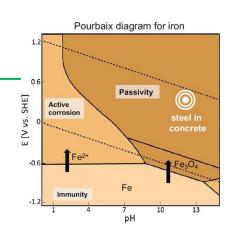
Pre-congress course ICCC 2023 Thailand, Carbonation, Chlorides and corrosion of reinforcement, U. Angst



Major reason of corrosion

- Carbonation induced corrosion
 - CO₂ in the environment
 - Disruption of the passivating film due to lowering of pH
 - Uniform degradation

- Chlorides induced corrosion
 - De-icing salts, seawater, sand etc.
 - Disruption of passivating film at high pH
 - Pitting, localized degradation

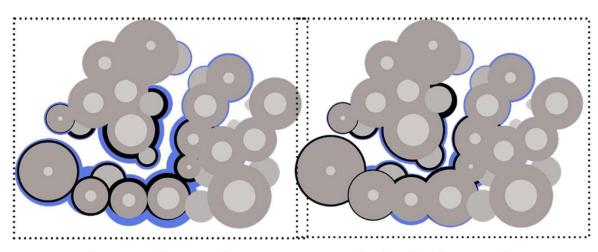


Carbon dioxide reacts with alkalis to carbonate them,

$$\begin{split} &\text{Ca}(\text{OH})_2 + \text{CO}_2 \to \text{CaCO}_3 + \text{H}_2\text{O} \\ &2\text{NaOH} + \text{CO}_2 \to \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \\ &2\text{KOH} + \text{CO}_2 \to \text{K}_2\text{CO}_3 + \text{H}_2\text{O} \\ &(\text{CaO})_x.(\text{SiO}_2)_y.(\text{H}_2\text{O})_z + \text{xCO}_2 \to \text{xCaCO}_3 + \text{ySiO}_2.(\text{H}_2\text{O})_t + (\text{z-yt}) \text{ H}_2\text{O} \end{split}$$

- this reduces the pH of the solution from 12.6 to 8-9.
- Loss of passivity! Corrosion is possible
- <u>Uniform corrosion:</u> Anodic and cathodic partial reactions are randomly and microscopically distributed over the steel surface.

Porosity and microstructure measurements.

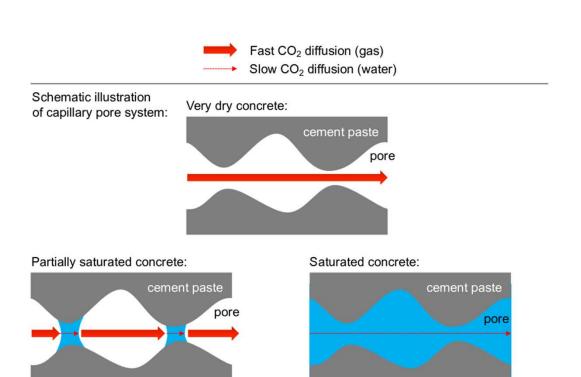

Lecture n. 4 Charactierisation techniques

Carbonation of C-S-H, ettringite, etc.

- reduces solid volume
- Increase in porosity

Carbonation of CH

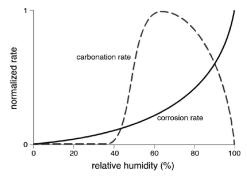
- Increases solid volume
- · Reduction of porosity

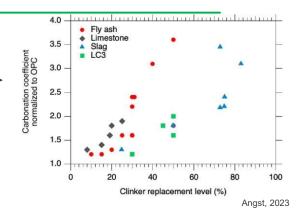


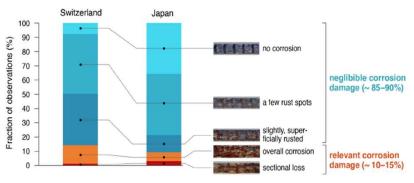
Increase in porosity

Reduction in porosity

Pre-congress course ICCC 2023 Thailand, Carbonation, Chlorides and Corrosion of reinforcement, S. Bishnoi

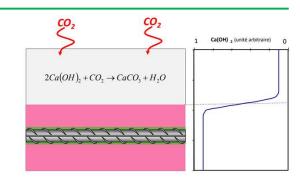



Pre-congress course ICCC 2023 Thailand, Carbonation, Chlorides and Corrosion of reinforcement, S. Bishnoi



- Carbonation rate depends on diffusivity/permeability
- Binder composition/ reserve alkalinity (CH available to buffer CO₂)
- Environmental CO₂ concentration
- Temperature
- Relative humidity
- Exposure condition
- Does not always lead to corrosion!

Angst, U.M. (2023). On the Carbonation Dilemma and How to Escape from It. 2023

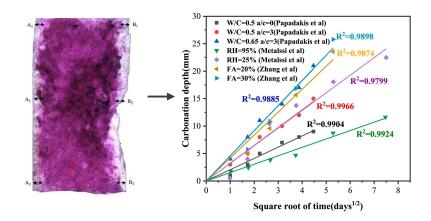


U. Angst et al., RILEM Technical Letters (2020) 5: 85-100

Carbonation - testing

- Phenolphthalein test (thymolphthalein) (pink at pH > 9.2, colourless at pH < 9.2)
- рН
- Reserve alkalinity

Measure: Carbonation depth

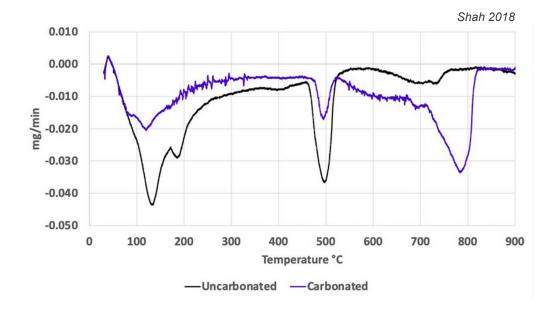

Square Root Law $d = k\sqrt{t}$

d = carbonation depth (mm)

t = time (years)

k = carbonation coefficient (mm/year^{0.5})

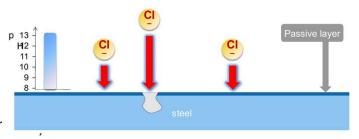
Higher the k, higher the rate of carbonation



Carbonation - testing

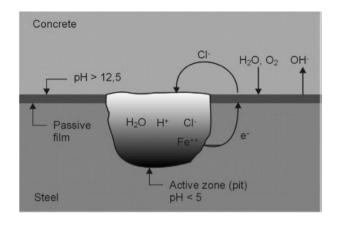
- Thermogravimetric Analysis (TGA)
- Other mineralogical techniques typical phase assemblage

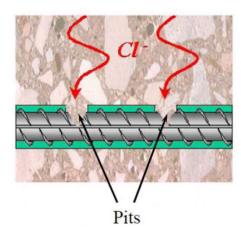
Lecture n. 4 Characterisation techniques



Chlorides induced corrosion

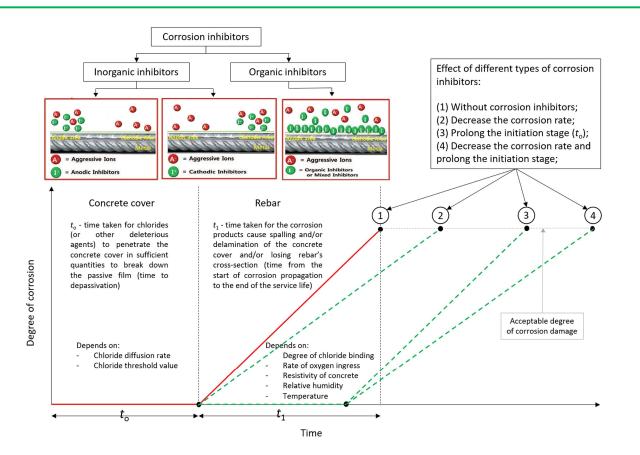
- Due to Cl⁻ ingress into concrete
- Cl- from different sources:
 - Seawater Marine exposure (dams, harbors, bridges, etc.)
 - ➤ De-icing salts (350'000 tonnes/year in Switzer
 - Swimming pools
 - Underground structures
 - Raw materials
 - Accelerators
- Disruption of passivating film at high pH.
- Localized corrosion Pitting


Chlorides induced corrosion


Ferrous ions combine with the chloride ions to form ferrous chloride $2Fe^{2+} + 4Cl^{-} \rightarrow 2FeCl_{2}$

Self-propagating due to acidic conditions created

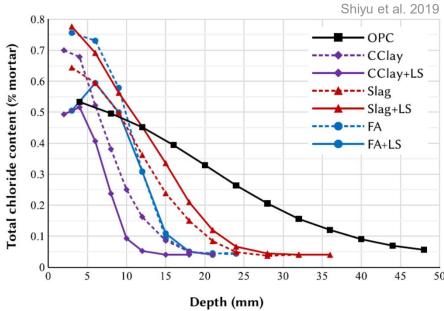
2FeCl₂ + 4H₂O → 2Fe(OH)₂ + 4H⁺ + 4Cl⁻


2FeOCl⁻ + 2H₂O → 2Fe(OH)₂ + 2Cl⁻

Chlorides penetration

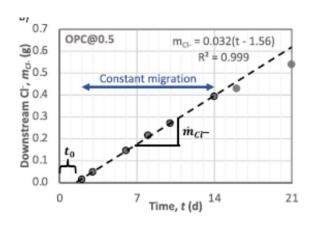


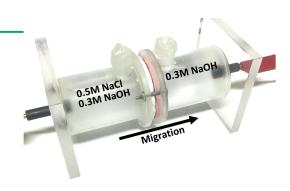
J. De Brito 2021 The past and future sustainable concrete

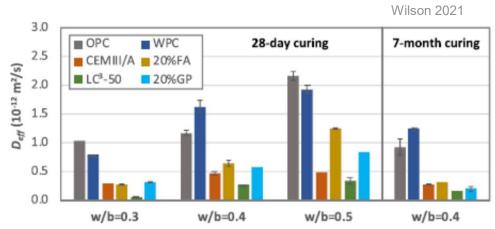


Chlorides penetration - testing

Chloride content profile, ASTM C1152

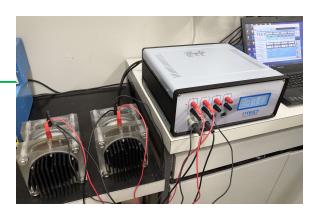

Georget 2020

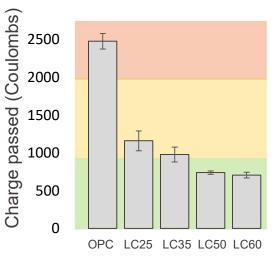



Chlorides penetration - testing

Mini-migration (pastes)

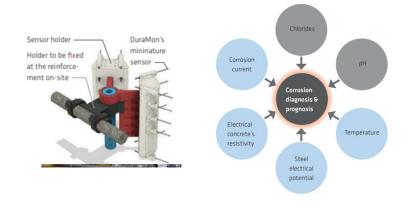
- Upstream: 0.5 M NaCl, 0.3 M NaOH
- Downstream: 0.3 M NaOH
- Voltage is applied


Chlorides penetration - testing

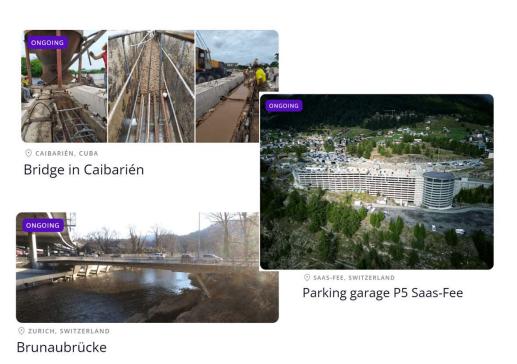

Rapid Chloride Penetration Test - RCPT (concrete)

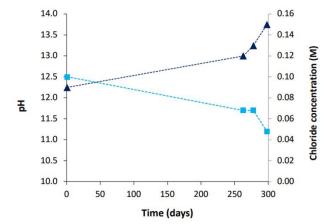
- ASTM C1202
- 0.5 M NaCl and 0.3 M NaOH.
- Voltage: 60 V, Test time: 6 h.
- Actual current (I,[mA])
- Charge passed (Coulombs):

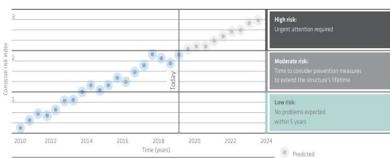
$$Q = 900 (I_0 + 2I_{30} + 2I_{60} + \dots + 2I_{300} + 2I_{330} + I_{360})$$


Charge passed [Coulombs]	Chloride Ion Penetration
>4000	High
2000-4000	Moderate
1000-2000	Low
100-1000	Very low
<100	Negligible

Corrosion in reinforced concrete (RC) – Last-generation monitoring techniques







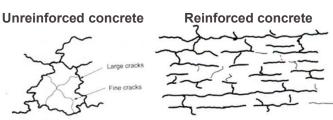
Corrosion in reinforced concrete (RC) – Last-generation monitoring techniques

Alkali Aggregate Reaction (AAR)

- Aggregates containing alkali reactive minerals should be avoided:
 - Alkali silica reaction (ASR)
 - Alkali carbonate reaction (ACR)
- Quality control for aggregate through petrographic analysis and expansion of mortar bars (UNI EN 8520-22, ASTM C295)

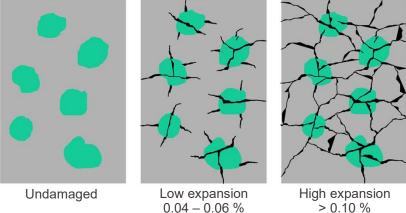
Reactive substance (mineral)	Chemical composition	Physical character	
Opal	$SiO_2 \cdot nH_2O$	Amorphous	
Chalcedony	SiO ₂	Microcrystalline to cryptocrystalline; commonly fibrous	
Certain forms of quartz	SiO ₂	Microcrystalline to cryptocrystalline; crystalline, but intensely fractured, strained, and/or inclusion- filled	
Cristobalite	SiO_2	Crystalline	
Tridymite	SiO_2	Crystalline	
Rhyolitic,dacitic, latitic, or andesite glass or cryptocrystalline devitrification products	Siliceous with lesser proportions of Al_2O_3 , Fe_2O_3 , alkaline earths and alkalis	Glass or cryptocrystalline material as the matrix of volcanic rocks or fragments in tuffs	
Synthetic siliceous glass	Siliceous, with lesser proportions of alkalis, Al ₂ O ₃ , and/or other substances	Glass	

Thomas et al. (2013)



Alkali Silica Reaction (ASR)

- Swelling and cracking (25-50mm depth)
- Usually a slow process (even after 30-40 years)
- Less often cause of failure than other mechanisms


Alkali aggregate reaction - ASR


Microstructure.

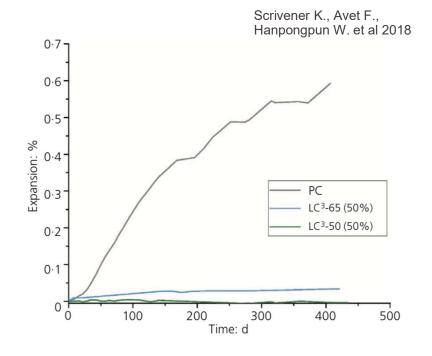
Lecture n. 4 Charactierisation techniques

- Gel imbibes water volume increase, expansion
- Restraint stresses due to ASR expansion
 4SiO₂ + 2NaOH → Na₂Si₄O໑ + H₂O

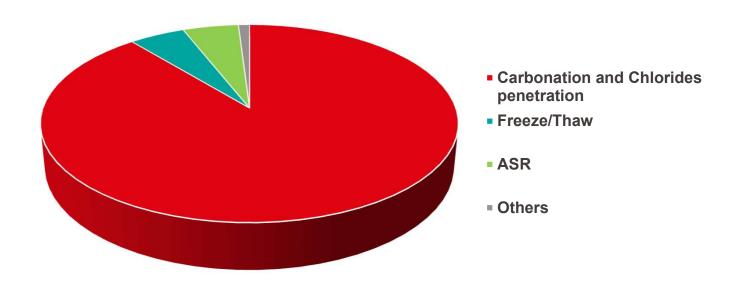
Scrivener Bachelor MX course – LMC website

Alkali aggregate reaction - ASR

- More than 400 structures are affected (Merz et al. 2006).
- 20-30% of Swiss dams are affected.
- 90% of the aggregates were classified as potentially reactive to ASR (Merz & Leemann, 2012).



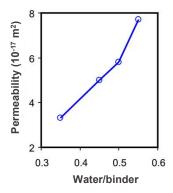
Swiss geology map from Nagra portal

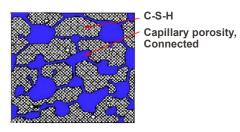

Alkali aggregate reaction - ASR

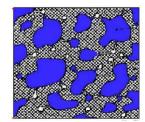
- Avoid reactive aggregates
- Use cement with low alkali content
- Add SCMs (calcined clays, fly ash etc.)
- Add air to compensate for stresses

Main degradation processes in concrete

Overall solutions to promote durability


- 1. Cement level
- 2. Concrete level
- 3. Design level

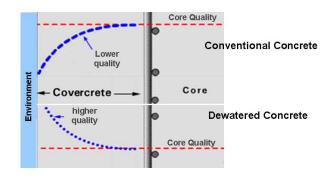


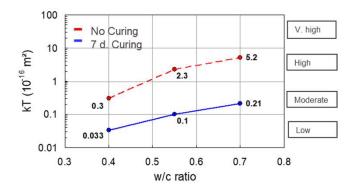

How can we make durable concrete?

Cement level:

- Low water/binder ratio
- Add entrained air to the concrete mix
- Use supplementary cementitious materials
- Reduce the total porosity
- Reduce connected porosity
- Reduce pore size
- Increase tortuosity

Ideal porosity


Neville


How can we make durable concrete?

Concrete level:

- Low binder content (particle packing)
- Proper compaction
- Proper curing
- Proper surface finish
- Use washed aggregates

How can we make durable concrete?

Design level:

- Sacrificial layers
 - Render
 - Larger concrete cover
- Away from direct exposure whenever possible
 - Chlorides
 - Steep slopes against water
 - Highly reactive environment

Durability in Standards and Codes

Exposure classes – Classification 1/2

1 No risk of corrosion or attack

X0	For concrete without reinforcement or embedded metal: all exposures except where there is freeze/ thaw, abrasion or chemical attack	
	For concrete with reinforcement or embedded metal: very dry	Concrete inside buildings with very low air humidity

No risks

2 Corrosion induced by carbonation

(Where concrete containing reinforcement or other embedded metal is exposed to air and moisture)

XC1	Dry or permanently wet	Concrete inside buildings with low humidity. Concrete permanently submerged in water
XC2	Wet, rarely dry	Concrete subjected to long-term water contact. Many foundations
XC3	Moderate humidity	Concrete inside buildings with moderate or high air humidity. External concrete sheltered from rain.
XC4	Cyclic wet and dry	Concrete surfaces subject to water contact, not within exposure class XC2

Carbonation

3 Corrosion induced by chlorides other than from sea water

(Where concrete containing reinforcement or other embedded metal is subject to contact with water containing chlorides, including deicing salts from sources other than sea water)

XD1	Moderate humidity	Concrete surfaces exposed to airborne chlorides
XD2	Wet, rarely dry	Swimming pools. Concrete exposed to industrial waters containing chlorides
XD3	Cyclic wet and dry	Parts of bridges exposed to spray containing chlorides. Pavements. Car park slabs

Chlorides no sea

Exposure classes – Classification 2/2

4 Corrosion induced by chlorides from sea water

(Where concrete containing reinforcement or other embedded metal is subject to contact with chlorides from sea water or air carrying salt originating from sea water)

XS1	Exposed to airborne salt but not in direct contact with sea water	Structures near to on the coast
XS2	Permanently submerged	Parts of marine structures
XS3	Tidal, splash and spray zones	Parts of marine structures

Chlorides from sea

5 Freeze/thaw attack with or without de-icing salts

(Where concrete is exposed to significant attack from freeze-thaw cycles whilst wet)

XF1	Moderate water saturation, without de-icing agents	Vertical concrete surfaces exposed to rain and freezing	
XF2	Moderate water saturation, with de-icing agents	Vertical concrete surfaces of road structures exposed to freezing and airborne de-icing agents	
XF3	High water saturation, without de-icing agents	Horizontal concrete surfaces exposed to rain and freezing	
XF4	High water saturation, with de-icing agent or sea water	Road and bridge decks exposed to de-icing agents. Concrete surfaces exposed to direct spray containing de-icing agents and freezing. Splash zones of marine structures exposed to freezing	

Freeze -Thaw

6 Chemical attack

XA1	Slightly aggressive chemical environment according to Table 2*	
XA2	Moderately aggressive chemical environment according to Table 2*	
XA3	Highly aggressive environment according to Table 2*	

Table 2 (of EN 206-1:2000) provides limiting values of SO₄, pH, CO₂, NH₄, Mg for ground water and SO₄ and acidity of natural soil for XA1,

Chemical attack

Exposure classes - Severity

Table 2. Environmental exposure conditions

Environment	Exposure conditions Concrete surfaces protected against weather or aggressive conditions, except those situated in coastal areas				
Mild					
Moderate	Concrete surface sheltered from severe rain or freezing whilst wet; concrete exposed to condensation and rain concrete continuously under water; concrete in contact or buried under non-aggressive soil/ground water; concrete surfaces sheltered from saturated salt air in coastal area				
Severe	Concrete surfaces exposed to severe rain, alternate wetting and drying or occasional freezing whilst wet or severe condensation; concrete completely immersed in sea water; concrete exposed to coastal environment				
Very severe	Concrete surfaces exposed to sea water spray, corrosive fumes or severe freezing conditions whilst wet; concrete in contact with or buried under aggressive sub-soil/ground water				
Extreme	Surface of members in tidal zone; members in direct contact with liquid/solid aggressive chemicals				

Source: Table 3 of IS 456:2000

Prescriptions vs Classification of exposure class

Table A.9 Limiting values for composition and properties of concrete to resist freezing and thawing (XF exposures)

Exposure class	Min. strength class	Max. w/c ratio	Min. air content (A) and min. cement or combination content (kg/m³) for max. aggregate size				Other require- ments
			32 mm or 40 mm	20 mm	14 mm	10 mm	
	C25/30	0.60	4.0	4.5	5.5	6.5	_
	C23/30	0.00	260	280	300	320	
XF1	C28/ 35 or	0.60	-	-	_	-	_
	LC28/31	0.00	260	280	300	320	
	C25/30 0.60	4.0	4.5	5.5	6.5	-	
		260	280	300	320		
XF2	C32/ 40 or	0.55	_	_	_	_	
	LC32/35	0.55	280	300	320	340	
	C25/30	0.60	4.0	4.5	5.5	6.5	Freeze-
	C25/30	0.60	260	280	300	320	thaw
XF3	C40/ 50 or	0.45	-	-	-	_	resisting aggregates
	LC40/44	0.45	320	340	360	360	B)
	620/25	٥٢٢	4.0	4.5	5.5	6.5	Freeze-
	C28/35	0.55	280	300	320	340	thaw
XF4	C40/ 50 or	0.45	_	_	_	_	resisting aggregates
	LC40/44	0.45	320	340	360	360	8)

BS8500

Prescriptions vs Severity of exposure class

nominal concrete cover for different exposure conditions specified in IS 456:2000

	1	1		
Exposure	sure Minimum cement content#, Maximum free w-c ratio Minimum grade of concrete		Minimum nominal concrete	
	kg/m ³			cover,* mm
Mild	300	0.55	M 20	20**
Moderate	300	0.50	M 25	30
Severe	320	0.45	M 30	45***
Very severe	340	0.45	M 35	50***
Extreme	360	0.40	M 40	75

Source: Table 5 of IS 456:2000.

Notes:

^{*} for a longitudinal reinforcing bar in a column, nominal cover shall not be less than 40 mm, nor less than the diameter of such bar;

^{**} for reinforcement upto 12 mm dia. bar for mild exposure, the nominal cover may be reduced by 5 mm;

^{***} for exposure conditions severe and very severe, reduction of 5 mm may be made, where concrete grade is M 35 and above. The actual concrete cover should not deviate from the required nominal cover by +10 mm.

[#] Cement content mentioned in the code is irrespective of the grades of cement and it is inclusive of the additions (fly ash, GGBS, silica fume, high reactive metakaolin, rice husk ash, etc.) mentioned in clause 5.2 of IS 456.

Why taking durability into consideration?

Structural design (exposure class, %air, w/b, concrete cover)

Maintenance (Predict and avoid damages)

Cost-effective (Maintenance vs Restoring)

<u>Safety</u> (Structure collapse, human life)

Sustainability (5-10% GWP, LCA lecture n.8)

Learning objectives

Now, at the end of this class, you are able to...

- **Define** durability, and **interpret** its significance for concrete and concrete structures.
- **Describe** the main degradation processes affecting concrete and concrete structures, and **identify** the parameters influencing them.
- **Suggest** mitigation and prevention solutions for the major degradation processes affecting concrete and concrete structures.
- **Relate** concrete durability to the sustainability of real concrete structures.

Always design in a durable and sustainable way!

Course Schedule

Wk#	Class date	Title	Lecturer
1	11/09/2024	Introduction/literature review	Prof. Karen Scrivener /Dr. Alastair Marsh
2	18/09/2024	Durability of cementitious materials	Dr. Beatrice Malchiodi
3	25/09/2024	Cement hydration	Prof. Karen Scrivener
4	02/10/2024	Characterisation techniques for cementiitous materials	Dr. Federica Boscaro
5	09/10/2024	Presentation 1	
6	16/10/2024	Admixtures	Dr. Federica Boscaro
7	30/10/2024	Presentation 2	
8	06/11/2024	LCA - Life Cycle Analysis	Dr. Alastair Marsh
9	13/11/2024	Sustainability approaches for construction	Dr. Alastair Marsh
10	20/11/2024	LC3 - Limestone Calcined Clay Cement	Dr. Beatrice Malchiodi
11	27/11/2024	Concrete design	Dr. Beatrice Malchiodi
12	04/12/2024	Concrete saving through a better structural design / Q&A on Presentation 3	Porf. David Ruggiero
13	11/12/2024	Presentation 3	
		08:15-09:00 Precast concrete, Sustainability in Concrete and Building Codes	Prof. David Fernandez-Ordoñez
14	18/12/2024	09:10-09:50 Circularity: Reuse of concrete elements	Prof. Corentin Fivet
	09:50-10:00 Semester projects at LMC		

Questions?

Advanced cementitious materials, MSE 420

Lecture 2: Durability of cementitious materials

Dr. Beatrice Malchiodi beatrice.malchiodi@epfl.ch 18 September 2024